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ABSTRACT

A detailed model of diffraction of Gaussian beams on plane uniform volume Bragg gratings based on a Kogelnik’s
theory of coupled waves is presented. The model describes transmitting and reflecting gratings and takes into account
spectral width and angular divergence of diffracted beams. Exact formulas for angular and spectral selectivity are
derived. Conditions for Bragg diffraction based on comparison between beam quality (divergence and spectral width)
and volume grating parameters (angular and spectral selectivity) are formulated. The model results are compared with
experimental data for high-efficient Bragg gratings in photo-thermo-refractive (PTR) glass.

Keywords: volume Bragg gratings, numerical approximation and analysis, holographic recording materials, photo-
thermo-refractive glass

1 INTRODUCTION

Nowadays volume Bragg gratings (VBGs) are considered as perfect spectral and/or angular selectors with highly
adjustable parameters. Angles of incidence and diffraction, central wavelength, and spectral/angular width could be
properly chosen by varying of a grating thickness, a period of refractive index modulation, and orientation of grating
vector. VBGs are used for spectral beam combining of laser beams with shifted wavelengths, '~ coupling elements in
laser resonators, *” beam deflectors, splitters, attenuators, etc. VBGs were recorded in various phase photosensitive
media such as photorefractive crystals, *'> dichromated gelatin, '*'* photopolymers, '> and inorganic photosensitive
glasses, '*!'” and used in various configurations. One of the most promising materials for VBGs is a photo-thermo-
refractive (PTR) glass which is a silicate one doped with silver, cerium and fluorine.'"® This glass can be used for
production of high-efficient holographic elements when both transmitting and reflecting VBGs exhibit diffraction
efficiency greater than 95% as well as perfect thermal, optical and mechanical stability in high-power beams were
observed. "> This is why the most important to compare theoretical modeling results with experimental ones obtained
for PTR Bragg gratings.

Over the last decades, there are numerous publications on theoretical and experimental studying of volume Bragg
gratings A most widely used basis for description of such gratings is the theory of coupled waves *' developed by
Kogelnik in 1969. Its results were applied for the further theoretical consideration *** and treatment of experimental
results observed for VBGs. There are several more approaches describing VBGs, e.g. rigorous coupled-wave analysis 2
and beam-propagation method. ” However, Kogelnik’s theory is still most used approach for the volume gratings’
modeling. The goal of this work is to reduce this rather complicated theory to simple practical formulae which could
assist in design of diffractive optics based on volume Bragg gratings. The paper will consider diffraction of plane
monochromatic, divergent, and polychromatic laser beams on uniform sinusoidal lossless transmitting and reflecting
volume gratings.

2 BASIC DEFINITIONS OF BEAM PROPAGATION AND DIFFRACTION IN BRAGG
GRATINGS

A sinusoidal uniform phase grating is a volume structure produced by refractive index modulation as it shown in Fig. 1.
Each such structure recorded inside a plane-parallel plate of a photosensitive material could be considered as either
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transmitting or reflecting Bragg grating depending on its

orientation in regard to the front surface and wavelength of Nz n=1
a readout beam. Fig. 1 illustrates a comparison of
transmitting and reflecting gratings produced by the same n(r)=ng+on-sin[2nfrcos(Kgr)]

periodical structure in a photosensitive medium. Dotted
arrows illustrates the beam tracing in transmitting grating
geometry, and dashed arrows - in reflecting one. Solid
arrows are the wave vectors of beams and the grating
vectors as it is noted in this Figure’s caption. In general
case, volume Bragg gratings could be entirely described by
the following set of parameters: the grating thickness ¢, an
average refractive index of a medium #,,, an amplitude of
refractive index modulation Jn, the grating period A (or
spatial frequency f=1/4), and the grating inclination angle ¢
between the normal to the grating front surface Ny and
grating vector K.

Grating vector K¢ is directed as a medium normal to the
planes of a constant refractive index and has a module
|Kg|=2nf. 1t is important to emphasize that a volume
sinusoidal grating itself has doubled degeneration of
directions of grating vectors due to its symmetry. For
example, a volume grating is a transmitting grating for short

wavelength radiation with large wave vector which crosses o .
the left vertical surface and directed down to the bottom of ~ 21d Kan — wave vectors of incident and diffracted

the Fig. 1. The same grating is a reflecting one for long ~ Pcams inside the grating medium; K - grating vector;
wavelength radiation with small wave vector which crosses ¢ — grating inclination; & and & — angles of incidence
the bottom surface and the grating vector is directed to the and diffraction; 6, —Bragg angle; 8, —incident Bragg
top of this Figure. An inclination angle ¢ which is the angle angle.

between the normal to the front surface Ny and the grating

vector Kg, is positive in counter-clockwise direction and can vary from —z/2 to +7/2. Transmitting grating excited
through the left vertical side of Fig. 1 has negative inclination; the same grating excited through the bottom side is a
reflecting grating with positive inclination.

1 i / ]Vf,'ex

Fig. 1. Propagation of optical rays through a volume
Bragg grating. Nyand Vg, —normals to the front
surface for incident (/;) and difracted (/,) beams; K;,,

Determination of angles in Bragg
gratings is similar to those in 725650 T K,
classical geometrical optics. Fig. 1 "

shows an incident beam I; e
approaches the front surface of the

plate at angle 0, refracted into the | ———  ~ J .-
medium at angle 6,,, and diffracted at 1,,‘/ —~ I i«

angle 6, For describing of Bragg Forward (+) Bragg order " Backward (+) Bragg order
diffraction in all types of volume
gratings regardless of type and K, T0>95 > =712
inclination, let wus introduce an | _ I’N_ . K,
incident Bragg angle in a medium, e X > =1

« . . . G
@, . This angle is determined as an (8, . ™~

angle between a grating vector Kg I;
and a wave vector K.i of a refr'acted Forward (-) Bragg order Backward () Bragg order i
beam inside the medium, and it can

vary from -m to +m. One can ) : . L. .
distinguish the following possible Fig. 2. Possible orders of Bragg diffraction inside medium. /; and 1, —

cases of Bragg diffraction depicted in incident and diffracted beams; K; — wave vector of incident beam; K¢ —
Fig.2. Positive orders of Bragg grating vector; &, — Bragg angle; 8, — incident Bragg angle.

6 ) o

K, ‘r—77/2>6’,f>—7r
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diffraction are for incident Bragg angle ranged from 0 to +m, i.e. for counter-clockwise direction of an incident beam
from grating vector. Similarly, negative orders of Bragg diffraction are for incident Bragg angle ranged from O to -n. The
forward orders of Bragg diffraction are for a module of an incident Bragg angle less than n/2. The backward orders of
Bragg diffraction are for a module of an incident Bragg angle more than n/2. Thus, depending on mutual orientation of
grating and incident wave vectors, one can distinguish four Bragg orders, e.g. “plus forward” or “minus backward”, etc.

Traditionally used (beginning from its crystallography applications) conventional Bragg angle in the media ,, has been
determined as a positive angle not exceeding 90° between the plane of a constant refractive index and a direction of the
beam propagation. As one can see from Fig. 2, the relationship between a Bragg angle and an incident Bragg angle is

sinf, = ‘cos 49;‘ . It is important to note that 6,, does not describe backward orders of diffraction which are important for

practical modeling of volume Bragg gratings.
3. DIFFRACTION OF PLANE MONOCHROMATIC WAVES ON BRAGG GRATINGS

3.1. Transmitting gratings

For volume Bragg gratings, diffraction of a beam with a certain wavelength occurs for the only one certain angle which
depends on grating spatial frequency according to Bragg’s condition:
AS (1)

n

av

.
‘cos g,

In accordance with Kogelnik’s theory, *' a solution of the scalar wave equation for transmitting VBG gives the following
formula for diffraction efficiency (DE):

)
_sin’ ({2 + CDZ)A
1+&% /2
Here phase incursion @ is the parameter which determines the maximum diffraction efficiency of VBG (grating
strength) when the Bragg condition is obeyed while dephasing parameter ¢ describes deviation from the Bragg condition

2

by detuning from either 9:1 or Ay. Phase incursion in Bragg condition could be written as:

&= nton , 3)

AF,

where parameter Fy is an inclination factor:

Fy = [— cos(¢ - H,:)cos(¢ +0 )]% @)

For normal transmitting gratings with p=+n/2, the expression for the inclination factor is simplified and becomes:

2
F,, =sing, = 1—[/]0fj - (%)

2n,,

The inclination factor describes additional optical path of incident and diffracted beams in a medium resulted from
deviation of propagation from the normal to the grating surface.

According to Eq. (2), DE of a transmitting grating in Bragg condition (£=0) is a periodic function of phase incursion @
and reaches 100% when
®=n/2+ jn, where;=0,1,2...(6)

Substitution of this phase incursion to Eq. (3) at /=0 and considering a Bragg angle value from Eq. (1) gives a minimum
thickness of grating ¢, which provides a 100% DE for a given refractive index modulation don:

AF,
=09 @)

20n

Ly

Dephasing parameter ¢ takes into account small angular deviations 46,, from an incident Bragg angle 9; and/or small

deviations 44 from central wavelength A:
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&= i (Aﬁm sing, - fM} (8)
cos(¢ -0, ) A 2n

av
av

For normal transmitting grating (¢p=n/2) this expression is simplified and can be written as:

&= lﬁ(AH __J MJ ©)

cos¢

2 R, /2
Interrelation between spectral and angular parameters could be obtained from differential form of Bragg condition (1):
A/1 2navF,,/2

Eq. (10) is universal interrelation between spectral and angular selectivity of VBG that allows easy calculating of one of
them from the given (or measured) another.

Angular selectivity of normal transmitting VBGs could be determined by substituting of Eqs (3) and (8) to (2) at AA=0:

ELCAE)

! 1+(A0ﬁﬂ/2A6m )2

(11)

n

Dependence of diffraction efficiency on detuning from Bragg angle is shown in Fig. 3. Curve 1 corresponds to
2-mm-thick VBG with 250-ppm refractive index modulation which provide 100% diffraction efficiency at 1085 nm.
One can see a well known central maximum and a number of side lobes with gradually decreasing magnitude. Curve 2
shows decreasing of DE resulted from decrease of refractive index modulation down to 125 ppm at the same grating
thickness; this decreases diffraction efficiency at the central maximum down to 50%, but positions of minima and
maxima of the side lobes practically are not changed. Curve 3 shows decreasing of DE resulted from decreasing of the
thickness down to 1 mm at 6n=250 ppm; this also provides DE of 50% but it causes dramatic widening of angular
selectivity, when the first minimum moves to the position of the second minimum for 2-mm-thick gratings.

It is important to note that Eq. (2) requires the following criterion for equalizing of diffraction efficiency to zero:

1
({2+(D2)A =jm, where j=1,2, ... n, ... (12)
Let us determine angular selectivity inside the VBG 5 Wave{‘ingth misg'atd‘i"g’ ‘1"“ 5
medium at the HWFZ (Half Width at First Zero) level, R | : ! I
59: WFZ, as the angle between the central maximum and the r
> €
first minimum at the diffraction efficiency curve. For VBGs g 08 1
with 100% diffraction efficiency the following expression | 2 06 &
for the HWFZ angular selectivity could be given: I 2
NG g I
G — 3 _087 (13) § 041
"o, £
It should be noticed that the HWFZ angular selectivity | & %2 t
00"% is slightly fewer than widely used grating 0k ‘ } ‘
parameter of FWHM angular selectivity which for 100%- -1 05 0 0.5 1
efficient grating could be easily estimated as .
Deviation from Bragg angle, mrad
66,""" =1/ fiy -

Fig. 3. Selectivity of transmitting Bragg gratings on
By the same way as it was described above for angular  {eviation from Bragg angle and central wavelength
selectivity, ONTEZ spectral selectivity is determined as a  for 4,=1085 nm, n,,~1.4867. Grating thickness, mm: 1
distance between the central maximum and the first zero in ~ and 2 — 2.0, 3 — 1.0. Refractive index modulation,
spectral distribution of DE which could be expressed by  ppm: 1 and 3 —250, 2 - 125.
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substitution of Egs (3) and (8) to Eq. (2) at A§,=0. In the case of normal transmitting grating, this expression is
simplified by the use of Eq. (9):

AR

L[ PABAY
2n,,0n
Spectral selectivity, has the same structure as angular selectivity due to their linear interrelationship described by Eq.
(10). For the grating parameters depicted in Fig. 3, this ratio is 4A/40~500 mm™. Thus, in addition of showing the

angular selectivity of 2- and 1-mm-thick transmitting VBGs, Fig. 3 shows spectral selectivity of the same gratings which
is represented by the upper horizontal axis of this Figure. For normal transmitting gratings with 100% diffraction

efficiency oA could be derived by substitution of Eq. (13) to Eq. (10):

5/‘HWFZ \/_nav n/2
[t

HWEFZ spectral selectivity of transmitting VBG could be easy varied from values below 0.1 nm to more than 100 nm by
proper choosing of grating parameters.

()= 0

(15)

3.2. Reflecting gratings

Generally, diffraction efficiency of reflecting Bragg grating is described by the following formula: *!
-1
1-&/®°
sinh? \/@* = &2

Here @ and ¢ are the same phase incursion at Bragg condition and dephasing parameter at certain detuning from Bragg
condition. According to Ref. [21], these parameters should be redefined for reflecting VBG as

&= inton
AF,

n=|1+ (16)

(17

&=

Ll [—Aﬁmsin9;+fA/lj (18)
cos(¢—6’) focos¢ 2n,,

For un-slanted reflecting gratings (¢p=0), these parameters becomes
mon  _ 21, ton

/lo‘cosé’;‘ B AS
g =0 (20)
AO

Spectral selectivity could be described in the terms of Bragg grating parameters:
-1

(19)

1_(/1 f M]
pad)=| 1+ 2n,,0n (21)

- 2 N4
; nhz{(met&zJ _[;ﬁm] J
AS A

Diffraction efficiency of reflecting Bragg grating strongly depends on grating thickness ¢ and refractive index
modulation on. If reflecting VBG is at exact Bragg condition (46,=41=0), {=0, and maximum of the grating diffraction
efficiency could be simplified from Eq. (16) as
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n, = tanh’ ﬂ (22) 10000

/]O‘cos g, :

Following to the behavior of hyperbolic tangent function,

diffraction efficiency maximum asymptotically approaches

the 100% value by increasing of grating thickness and/or

refractive index modulation. In this case the maximum of

grating diffraction efficiency could be predetermined at

certain value 7, which would serve as one more
characteristic for reflecting VBG.

1000 +

Refractive index modulation, ppm

Fig. 4 illustrates this interrelation for four different values of
diffraction efficiency 7y: 90% which correspond to 10-dB 100
transmitted-beam-attenuation, 99% (20 dB), 99.9% (30 dB), 0.1 1 10
and 99.99% (40dB) at 1,~1085nm for normal beam Thickness, mm

incidence onto a grating. It should be noticed that refractive
index modulation dn is less than 1000 ppm only when the Fig. 4. Dependence of refractive index modulation
grating thickness is more than 1mm for securing the  which secured predetermined diffraction efficiency on
diffraction efficiency level of 7,99% (20 dB attenuation).  {h¢ grating thickness. Diffraction efficiency: 1 — 90%,
Therefore, reflecting VBGs should be thick enough for 2999, 3999% 4 99.99%. 1,~1085 nm,
securing of their efficient reflection at relatively low values n,=1.4867.

of refractive index modulation.

To determine spectral selectivity 64”""* at HWFZ level, Eq. (25) should be equalized to zero, and diffraction efficiency
reaches zero value at multiple points when &#® (otherwise we have a function singularity at this point):
1
( Z—cDZ)A =jm,  wherej=1,2,...,n, ... (23)

Generally, for determining of spectral selectivity as the HWFZ level, 64" one should substitute Eqs (17) and (18) to
(23) at j=1. However, this general result could be considerably simplified for un-slanted gratings with diffraction

efficiency 7y:
i
A ((atanh m, )2 + 772) ’

Tt
Estimation of typical values of spectral selectivity 54" for 7,=99%, 1,=1085 nm, n,~=1.485, and gives the following
formula for normal beam incidence:

SNz = (24)

0.55
N [ O——"= (25)
t [mm]
Let us note that the grating with fixed thickness ¢ exhibits lesser diffraction efficiency 7, at smaller values dn, and
spectral selectivity of such a grating is narrowing, too.

Derivation of the basic interrelation between angular and spectral parameters for reflecting VBG could be performed
similarly to the procedure described in Sec. 3.1 for transmitting Bragg gratings. Expression of the Bragg condition, Eq.
(1), in its differential form and considering of the second order for angular deviation from exact Bragg angle, one can
write the interrelation formula for spectral and angular parameters for reflecting gratings:
b
« 204 .
AG? =+ tan’ g+~ | +tand, (26)
AO
If we would like to consider angular selectivity at zero level of diffraction efficiency, one can calculate it by substitution

of AA =X to Eq. (26). However, it defines two different solutions which follows us to introduce two different

definitions for angular selectivity shown in Fig. 5. The first one, Full-Width at Zero level angular selectivity, 59,5 v s

defines as the full distance between two minima (zeros) in angular selectivity that includes both orders of the diffraction
efficiency maxima between them:
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25 \HWFZ A 1
06" =2/ tan* g, + ——— 27 T
A 1
By substitution of the spectral selectivity value from Eq. z 08 T
(24), angular selectivity 56!:”/2 of un-slanted reflecting §
VBG at predetermined DE value 7, could be expressed as g 0o 1
=
o o | Fu
atan + s 0. T
08" =2| tan 4, + T @) | &
m m m E 4
0.2 <z HWFZ
Let us note that changing of refractive index modulation T FWZ
(and corresponding changing of grating diffraction 0 = === = =
efficiency) gradually affects the angular selectivity 08"~ . 2 -1 0 1 2 3 4 5 6
When 1-mm-thick VBG has 2000-ppm of refractive index Angular deviation from Bragg angle, deg

modulation (it corresponds to diffraction efficiency
>99.99%), angular selectivity shape changes to total i
overlapping of diffraction peaks; these peaks are partially ~ (Solid arrow) and FWZ (dashed arrow) levels for
separating at #7,~99.9% (én=1500 ppm) as it is shown in 1-mm-thick 99.9%-efﬁ(ilent reflecting VBG at

Fig.5, and then they are fully dividing at #/~99% incident Bragg angle Hm =2°. Refractive index
(5}1:1.000 ppm). This result is one of the most important fqr modulation dn=1500 ppm, A=1085 nm, 1,,~1.4867.
practical applications of reflecting Bragg gratings because it

allows adjusting of grating angular selectivity by changing of the diffraction efficiency near its 100% limit through
varying of grating parameters only.

Fig. 5. Definition of angular selectivity at HWFZ

The second type of angular selectivity at Half-Width at First Zero level, JHMHWFZ, should be uses for practical

applications at relatively low diffraction efficiency as well as for higher incident Bragg angles 9; when two diffraction

orders don’t overlap. HWFZ selectivity determines as an angular distance between the maximum of diffraction
efficiency and its first (left) zero in angular selectivity curve:

HWFZ %
50" =|ng)| =(tan2 g +25’;J ~an@’

0

(29)

Let us estimate at what Bragg angle (9; one should consider the HWFZ angular selectivity rather than its FWZ value for
a grating with diffraction efficiency #,. The criterion to determine this angle, let us call it as a threshold angle 6,, might

be defined as a incident Bragg angle at which 8""” =458 . At all 8, <@, FWZ selectivity should be used for
WFZ

describing of a grating selectivity, otherwise the doubled value of d8, should be considered. Combining of Eqgs (28)

and (29) gives the result:

28 /]O((atanh , )2 +n2)%

= (30)
31, 3m, ¢

tan’ 6,

cos 6|

Exact solution of Eq. (30) could be expressed as

2

G+NG* +4

where G is a grating factor which is determined by the grating thickness ¢ and diffraction efficiency #,:
P
/]O((atanh , )2 + nzj ’

3, t

, 1)

lcos 6| =

(32)
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Usually G is about 10*-107; this defines proximity of
120

|Cos 490| to the unity, and 6, is small enough. For =1 mm,

A~=1085 nm, and #,=99%, the threshold angle 6, is about
1°.

1 (A)

100 \

Because there are two different definitions of Bragg grating
angular selectivity, one should define at what way the

angular selectivity will be determined. At 5:1 < 50, FwZz

angular selectivity is determined by Eq. (28) and showed in
Fig. 6(A) for 99%-efficient gratings as a function of
incident Bragg angle. One can see, the thicker the grating
(in the assumption that all they are 99%-efficient by
respective choosing of their refractive index modulation),
the higher the HWZ angular selectivity. The angular Incident Bragg angle, deg

selectivity d8""7 is slightly increasing with the increase of

m

FWZ angular selectivity, mrad

0 0.2 0.4 0.6 0.8 1

the incident Bragg angle; the rate of this increasing is higher 100 ¢
for thicker gratings. Fig. 6(B) shows that HWFZ angular g
selectivity dramatically depends on both incident Bragg

angle 9,: and VBG thickness ¢. For instance, 10-mrad
HWFZ selectivity is secured at 9:1=10° for 0.3-mm-thick

grating, or at 9:1 =2° for 1.25-mm grating thickness. One

can conclude that reflecting VBG has a minimal angular
selectivity near the threshold angle 6,~1°.

Angular selectivity, mrad

Hence, despite the fact that spectral selectivity of reflecting O e e
Bragg gratings can not be unambiguously specified, one can
use one out of two different definitions of angular
selectivity in accordance with prevailing of either threshold
or incident Bragg angle. This phenomenon is inherent to
reflecting Bragg gratings and it could be used for design of  Fig. 6. Dependence of FWZ (A) and HWFZ (B)
high-selective spectral filters with relatively low angular  angular selectivity on incident Bragg angle for
selectivity. 99%-efficient reflecting VBG at 4/=1085 nm,
n,~=1.4867. Grating thickness, mm: (A) -1 -0.5; 2 —
4. DIFFRACTION OF GAUSSIAN BEAMS 1.0;3-5.0;4-10.(B)- 1-0.5;2—1.0;3—-3.0;4—
ON A TRANSMITTING BRAGG 5.0;5-10.
GRATING

Incident Bragg angle, deg

In this part we present results of Bragg diffraction modeling of monochromatic beam which has the divergence that
could be approximated by a Gaussian function. If the direction of the beam propagation matches the Bragg condition,
normalized function of the beam intensity in the angular space could be written as

2
Gl(ﬁ,b)=exp|:—2(g_b9”’] } (33)

For diffraction-limited beam with diameter D, the lower the beam diameter, the higher the beam divergence is occurred.
For determining of DE of Bragg grating for such divergent beam, convolution in the angular space of the functions given
by Eqs (11) and (33) should be applied. After substitution of the numerical value of a Gaussian-function integral,
diffraction efficiency could be written as

21
76(b) =£ ~[m6)G,©@.6)a6 (34)
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. .. . . Wavelength mismatching, nm
Fig. 7(A) shows angular selectivity of the grating with 3 2 0 1 2 3

1 t }
535 "2 ~0.4 mrad and 100% diffraction efficiency for a i

plane monochromatic wave at 1085 nm for four beams with z 0.8

different divergences b. While the beam divergence is much 8

less than the grating angular selectivity (Curve 1 £ 06 1

corresponding b=0.04 mrad), there is no decrease of = [

diffraction efficiency compare to that for planar wave and % 0.4 1

the curve minima reach zero values as it appears for the £

planar wave (Fig.3). However, if the beam divergence Z o2l

becomes comparable with the grating selectivity, dramatic [

decreasing of maximal DE occurs (Curves 2-4). When 0 -k

divergence and selectivity values are equal, b=O : WFZ, -15 -1 -0.5 0 0.5 1 1.5

maximum diffraction efficiency is about 60% only. Also, Deviation from Bragg angle, mrad

side lobes are flattening while the divergence increasing,

local minima of angular selectivity starting to differ from 1

zero significantly, and at b>O ”7 "7 ~0.4 mrad  the

selectivity curve does not have any local minima at all. ., 0871 3 (B)
g —

Fig. 7(B) shows the dependence of diffraction efficiency on 2 06+ 1

the beam divergence. Four gratings with thickness 20 and 3

2.0 mm and spatial frequency 357 mm™ as well as with E

thickness 2.0 and 0.2 mm and spatial frequency 1086 mm" s 0.4 7

have respective values of HWFZ angular selectivity of 0.12, E 2

1.2, 0.4, and 4 mrad in accordance with Eq. (13). It was 02+

found that diffraction of a divergent beam causes decreasing

of diffraction efficiency down to 99% when the beam ol

divergence b becomes 8 times less than the grating HWFZ 0.0l ol . 10 100

angular selectivity 87", i.. losses are less than 1% .
Beam divergence, mrad

when 8b§50: "2 Further increasing of the beam

divergence b (e.g. by decreasing of the bean diameter for ~ Fig. 7. Selectivity of transmitting VBG for divergent
diffraction-limited beams) results in dramatic decreasing of ~ beams. (A) - Dependence of diffraction efficiency on
the DE value. When the beam divergence is equal to the  detuning from Bragg angle. Beam divergence, mrad: 1
HWFZ -0.04,2-0.2,3-0.4,4—-0.8; grating angular

] m selectivity is 0.4 mrad. (B) - Dependence of grating
decreases almost twice (down to 58%). DE on the beam divergence. Grating angular
selectivity, mrad: 1 —0.12,2-0.4,3-1.2,4 - 4.0;
shown by dotted arrows. Dotted line corresponds to

grating angular selectivity O , diffraction efficiency

If we consider the Bragg diffraction of polychromatic

beams with Gaussian shape of the spectral distribution: diffraction efficiency for a beam with divergence or
A=A, : 35 spectral width equal to the grating selectivity.
G,(A,w)=exp| -2 , (35)
w

where parameter w is the HWe™M spectral width and /, is a central wavelength of a beam. Modeling of such diffraction
could be performed similarly as it was done for divergent beams. Diffraction efficiency of transmitting VBG for such
beams could be calculated from convolution of the DE for monochromatic wave determined by Eq. (15) with the
Gaussian spectral distribution described by Eq. (35). This gives us the adjusted value of diffraction efficiency #,(w):

(W)= \F L 116, (A waz (36)
Tw

Again, taking into account spectral-angular reciprocity in accordance with Eq. (10), one can conclude that the grating
DE is only about 60% when the beam spectral width w is equal to the grating selectivity 04”"". Diffraction efficiency
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for narrow-spectral-line beams is the same as for
monochromatic wave, and it is decreasing down to 99% 1
when beam spectral width becomes approximately 8 times I 1 (A)
fewer than the grating HWFZ spectral selectivity, i.e. when I
XM=y,

=
[ee]
I
T

=
(o)}
I
T

5. DIFFRACTION OF GAUSSIAN BEAMS
ON A REFLECTING BRAGG GRATING

=
S
I
T

Diffraction efficiency

Similarly to diffraction of Gaussian beams on transmitting
Bragg gratings described above, we will consider the Bragg
diffraction by comparing of grating selectivity with the
beam spectral width and/or angular divergence. Results of 0 P D
numerical calculations of Bragg diffraction on reflecting 15 -1 205 0 0.5 1 15
gratings are shown in Fig. 8. Fig. 8(A) shows how different
polychromatic beams diffract on 1.1-mm-thick grating
which has DE=99% at normal beam incidence. According |
to Eq. (24), this VBG has 0.5-nm-spectral selectivity. One NN N\ \
can see that diffraction efficiency drops down while beam N
spectral widening; this grating has diffraction efficiency of 0.8 1 P\ P\
about 60% when w=252""""*_ In comparison with the same
dependence of spectral selectivity for transmitting gratings
described above, when 60%-level of DE achieved at
w=0"""2one can conclude that spectral width of incident
beams is twice less restrictive parameter for reflecting
VBGs in comparison with the transmitting ones. Also, side
lobes in the spectral selectivity curves are beginning to
disappear when the beam spectral width is approximately
twice less than the grating spectral selectivity (2w>01"""%);
total flattening of the DE curve occurs when these values
become equal each to other and for further increasing of the
beam spectral line-width (w>01"""%),

=
[\
I
T

Wavelength mismatching, nm

(B)

Diffraction efficiency

Spectal width, nm

Fig. 8. Selectivity of 99%-efficient reflecting VBG for
Fig. 8(B) shows dependence of diffraction efficiency #;(w)  polychromatic plane waves at normal incidence. (A) -
on the beam spectral bandwidth w for a set of VBG with ~ Dependence of diffraction efficiency on spectral
different spectral selectivity. These gratings have thickness ~ mismatching from Bragg condition. Beam spectral
of 109, 5.5, 1.1, and 0.55mm, and all they are width,nm:1-0.05,2-0.253-0.5,4—1.0; grating
99%-efficient for monochromatic wave. Their spectral  Spectral selectivity is 0.5 nm. (B) - Dependence of
selectivity is determined from Eq. (27) as 0.05, 0.1, 0.5, and ~ grating DE on the beam spectral width. Grating
1.0 nm, respectively. One can see that 99%-efficient  spectral selectivity, nm: 1 -0.05,2-0.1,3-0.5,4 -
reflecting VBG exhibits fewer losses in the DE value in  1.0; shown by dotted arrows. Dotted line corresponds
comparison with 100%-efficient transmitting VBG when a  to diffraction efficiency for a beam with spectral width
beam bandwidth is equal to spectral selectivity of the  which is equal to the grating selectivity.
grating. In this case, only about 10% from the diffraction
efficiency for monochromatic beam becomes lost. There is no considerable decreasing in gratings’ DE for the narrowest
beams, and the decreasing from 99% to 98% occurs when beam width w becomes approximately twice less than the
grating spectral selectivity. This parameter for 1%-efficiency-decreasing ratio is about 4 times less restrictive in
comparison with the same parameter for transmitting VBG as it was determined above in Sec. 4.

It is important to note that the general shape of the curves showed in Fig. 8 does not change when the beam incidence is
not normal (i.e. incident Bragg angle 6?; # 0 ) but the central beam wavelength obeys the relation A, = AT |cos g’:‘ Thus

one can use the criterion described above for determining of diffraction losses resulting from spectral widening of

diffracted beams for all values of incident Bragg angles 9; .
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Although the general shape of angular selectivity for
reflecting VBG at normal incidence is the same as its
spectral selectivity shown in Fig. 8, two different values of

angular selectivity described above determines slightly E i

different interrelations between grating selectivity, beam 3 0.95 7

divergence, and resulting diffraction efficiency. The main g I

difference is in reaching of a local maximum in H

characteristic value of diffraction efficiency (which i

corresponds to equilibrium of HWFZ grating selectivity to | £ 097
a

beam divergence) at DE~95% for & =6, due to

overlapping of positive and negative diffraction orders.
Further increasing of incident Bragg angle results in weak 0.85 I
decreasing of this DE value down to about 90%-level; it is
in good correlation with the data shown in Fig. 8 for
spectral selectivity. Generally, reflecting VBGs are less Power, W
restrictive for securing of high DE in comparison with
transmitting VBGs, especially for divergent beams at the
incident Bragg angle near threshold one, but they have
higher spectral selectivity which could considerably restrict
efficient Bragg diffraction of wide-spectrum beams.

0 20 40 60 80 100

Fig. 9. Dependence of diffraction efficiency of PTR
Bragg grating on power of radiation with central
wavelength at 1085 nm. Triangles — experimental
results. 1 — DE calculation for monochromatic beam
with 0.2-mrad-divergence. 2 — DE calculation for

6. COMPARISON OF THE MODEL AND Planar wave with spectral width equal to the
EXPERIMENTAL RESULTS eXperimental Values, 3-— pI‘OduCt of 1 and 2.

To prove the model experimentally, we recorded transmitting VBG in 1.23-mm-thick PTR glass with spatial frequency
of 425 mm™ and refractive index modulation of 420 ppm which should exhibit DE=100% for planar monochromatic
wave at 1085 nm. 100-W CW single-mode Yb-doped fiber laser (IPG Photonics Corp., model YLR-100) with central
wavelength of 1085 nm was used for testing. This laser had collimated output (5-mm-diameter Gaussian beam). This
laser has near-diffraction-limited divergence of 0.23 mrad in the whole studied power region while spectral width at the
HWe™M level increases from 2.7 to 4.7 nm, when the output power rose from 15 to 100 W.

Dependence of DE of PTR Bragg grating on the laser power is shown in Fig. 9. Because PTR Bragg gratings have no
thermally induced effects at power density levels up to 100 kW/cm?, DE decreasing could be explained by changing of
laser beam parameters at different levels of emitting power. Based on theoretical modeling results, we evaluated how
spectral width and divergence of the beam affect diffraction efficiency of this particular grating. Theoretical DE of this
grating is expected to be equal to 100% for planar monochromatic wave. Diffraction of the laser beam with 0.23-mrad-
divergence on the grating with angular selectivity of 1.6 mrad (HWFZ) results in decreasing of diffraction efficiency
down to 98.6% (Line 1). For planar polychromatic wave with spectral width linearly increasing with power increase,
calculated diffraction efficiency dependence on power is shown as Line 2. Line 3, as a result of multiplication of Lines 1
and 2, presents the calculated DE for polychromatic divergent beam which should drop down from 93.5 to 87% for
beams with spectral width of 2.7 nm and 4.7 nm, respectively. Corresponding experimental data are 93 and 87%
(triangles in Fig. 9). Comparison of calculation data with experimental results shows very good correspondence. Thus,
the proposed model is able to describe diffraction of polychromatic divergent beams on real PTR Bragg gratings.
Another consequence of this coincidence is that the experimental PTR Bragg grating is very close sinusoidal uniform
grating as it was supposed in the model.

7. CONCLUSIONS

+ Practical mathematical model based on Kogelnik’s coupled wave theory is developed for diffraction of Gaussian
beams with wide range of spectral width and angular divergence.

+ The model allows fast analytical calculation and could be used for design of different devices based on volume
Bragg grating and testing tools for Bragg grating certification.
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Requirements for parameters of gratings and laser beams for lossless Bragg diffraction are formulated.
Theoretical model is compared with and found very close to experimental data.
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