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ABSTRACT 
 

A detailed model of diffraction of Gaussian beams on plane uniform volume Bragg gratings based on a Kogelnik’s 
theory of coupled waves is presented. The model describes transmitting and reflecting gratings and takes into account 
spectral width and angular divergence of diffracted beams. Exact formulas for angular and spectral selectivity are 
derived. Conditions for Bragg diffraction based on comparison between beam quality (divergence and spectral width) 
and volume grating parameters (angular and spectral selectivity) are formulated. The model results are compared with 
experimental data for high-efficient Bragg gratings in photo-thermo-refractive (PTR) glass. 
 
Keywords: volume Bragg gratings, numerical approximation and analysis, holographic recording materials, photo-
thermo-refractive glass 
 

1 INTRODUCTION 
 
Nowadays volume Bragg gratings (VBGs) are considered as perfect spectral and/or angular selectors with highly 
adjustable parameters. Angles of incidence and diffraction, central wavelength, and spectral/angular width could be 
properly chosen by varying of a grating thickness, a period of refractive index modulation, and orientation of grating 
vector. VBGs are used for spectral beam combining of laser beams with shifted wavelengths, 1-3 coupling elements in 
laser resonators, 4-7 beam deflectors, splitters, attenuators, etc. VBGs were recorded in various phase photosensitive 
media such as photorefractive crystals, 8-12 dichromated gelatin, 13,14 photopolymers, 15 and inorganic photosensitive 
glasses, 16,17 and used in various configurations. One of the most promising materials for VBGs is a photo-thermo-
refractive (PTR) glass which is a silicate one doped with silver, cerium and fluorine.18 This glass can be used for 
production of high-efficient holographic elements when both transmitting and reflecting VBGs exhibit diffraction 
efficiency greater than 95% as well as perfect thermal, optical and mechanical stability in high-power beams were 
observed. 19,20 This is why the most important to compare theoretical modeling results with experimental ones obtained 
for PTR Bragg gratings. 
 
Over the last decades, there are numerous publications on theoretical and experimental studying of volume Bragg 
gratings A most widely used basis for description of such gratings is the theory of coupled waves 21 developed by 
Kogelnik in 1969. Its results were applied for the further theoretical consideration 22-25 and treatment of experimental 
results observed for VBGs. There are several more approaches describing VBGs, e.g. rigorous coupled-wave analysis 26 
and beam-propagation method. 27 However, Kogelnik’s theory is still most used approach for the volume gratings’ 
modeling. The goal of this work is to reduce this rather complicated theory to simple practical formulae which could 
assist in design of diffractive optics based on volume Bragg gratings. The paper will consider diffraction of plane 
monochromatic, divergent, and polychromatic laser beams on uniform sinusoidal lossless transmitting and reflecting 
volume gratings.  
 

2 BASIC DEFINITIONS OF BEAM PROPAGATION AND DIFFRACTION IN BRAGG 
GRATINGS 

  
A sinusoidal uniform phase grating is a volume structure produced by refractive index modulation as it shown in Fig. 1. 
Each such structure recorded inside a plane-parallel plate of a photosensitive material could be considered as either 
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transmitting or reflecting Bragg grating depending on its 
orientation in regard to the front surface and wavelength of 
a readout beam. Fig. 1 illustrates a comparison of 
transmitting and reflecting gratings produced by the same 
periodical structure in a photosensitive medium. Dotted 
arrows illustrates the beam tracing in transmitting grating 
geometry, and dashed arrows - in reflecting one. Solid 
arrows are the wave vectors of beams and the grating 
vectors as it is noted in this Figure’s caption. In general 
case, volume Bragg gratings could be entirely described by 
the following set of parameters: the grating thickness t, an 
average refractive index of a medium nav, an amplitude of 
refractive index modulation δn, the grating period Λ (or 
spatial frequency f=1/Λ), and the grating inclination angle φ 
between the normal to the grating front surface Nf and 
grating vector KG.  
 
Grating vector KG is directed as a medium normal to the 
planes of a constant refractive index and has a module 
|KG|=2πf. It is important to emphasize that a volume 
sinusoidal grating itself has doubled degeneration of 
directions of grating vectors due to its symmetry. For 
example, a volume grating is a transmitting grating for short 
wavelength radiation with large wave vector which crosses 
the left vertical surface and directed down to the bottom of 
the Fig. 1. The same grating is a reflecting one for long 
wavelength radiation with small wave vector which crosses 
the bottom surface and the grating vector is directed to the 
top of this Figure. An inclination angle φ  which is the angle 
between the normal to the front surface Nf and the grating 
vector KG, is positive in counter-clockwise direction and can vary from –π/2 to +π/2.  Transmitting grating excited 
through the left vertical side of Fig. 1 has negative inclination; the same grating excited through the bottom side is a 
reflecting grating with positive inclination.  
 
Determination of angles in Bragg 
gratings is similar to those in 
classical geometrical optics. Fig. 1 
shows an incident beam Ii 
approaches the front surface of the 
plate at angle θi, refracted into the 
medium at angle θim, and diffracted at 
angle θd. For describing of Bragg 
diffraction in all types of volume 
gratings regardless of type and 
inclination, let us introduce an 
incident Bragg angle in a medium, 

*
mθ . This angle is determined as an 

angle between a grating vector KG 
and a wave vector Ki of a refracted 
beam inside the medium, and it can 
vary from -π to +π. One can 
distinguish the following possible 
cases of Bragg diffraction depicted in 
Fig. 2. Positive orders of Bragg 
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diffraction are for incident Bragg angle ranged from 0 to +π, i.e. for counter-clockwise direction of an incident beam 
from grating vector. Similarly, negative orders of Bragg diffraction are for incident Bragg angle ranged from 0 to -π. The 
forward orders of Bragg diffraction are for a module of an incident Bragg angle less than π/2. The backward orders of 
Bragg diffraction are for a module of an incident Bragg angle more than π/2. Thus, depending on mutual orientation of 
grating and incident wave vectors, one can distinguish four Bragg orders, e.g. “plus forward” or “minus backward”, etc.  
 
Traditionally used (beginning from its crystallography applications) conventional Bragg angle in the media θm has been 
determined as a positive angle not exceeding 90° between the plane of a constant refractive index and a direction of the 
beam propagation. As one can see from Fig. 2, the relationship between a Bragg angle and an incident Bragg angle is 

*cossin mm θθ = . It is important to note that θm does not describe backward orders of diffraction which are important for 

practical modeling of volume Bragg gratings. 
 

3. DIFFRACTION OF PLANE MONOCHROMATIC WAVES ON BRAGG GRATINGS 

3.1.    Transmitting gratings 
 
For volume Bragg gratings, diffraction of a beam with a certain wavelength occurs for the only one certain angle which 
depends on grating spatial frequency according to Bragg’s condition: 

 
av

m n
f

2
cos 0* λθ =   (1) 

In accordance with Kogelnik’s theory, 21 a solution of the scalar wave equation for transmitting VBG gives the following 
formula for diffraction efficiency (DE):  
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Here phase incursion Φ is the parameter which determines the maximum diffraction efficiency of VBG (grating 
strength) when the Bragg condition is obeyed while dephasing parameter ξ describes deviation from the Bragg condition 
by detuning from either *

mθ  or λ0. Phase incursion in Bragg condition could be written as: 
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where parameter Fϕ is an inclination factor: 
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For normal transmitting gratings with φ=±π/2, the expression for the inclination factor is simplified and becomes: 
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The inclination factor describes additional optical path of incident and diffracted beams in a medium resulted from 
deviation of propagation from the normal to the grating surface.  
 
According to Eq. (2), DE of a transmitting grating in Bragg condition (ξ=0) is a periodic function of phase incursion Φ 
and reaches 100% when  

ππ j+=Φ 2 ,  where j=0, 1, 2… (6)  
Substitution of this phase incursion to Eq. (3) at j=0 and considering a Bragg angle value from Eq. (1) gives a minimum 
thickness of grating t0 which provides a 100% DE for a given refractive index modulation δn:  
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Dephasing parameter ξ takes into account small angular deviations ∆θm from an incident Bragg angle *
mθ  and/or small 

deviations ∆λ from central wavelength λ0:  
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For normal transmitting grating (φ=π/2) this expression is simplified and can be written as: 
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Interrelation between spectral and angular parameters could be obtained from differential form of Bragg condition (1): 
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Eq. (10) is universal interrelation between spectral and angular selectivity of VBG that allows easy calculating of one of 
them from the given (or measured) another.  
 
Angular selectivity of normal transmitting VBGs could be determined by substituting of Eqs (3) and (8) to (2) at ∆λ=0: 
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Dependence of diffraction efficiency on detuning from Bragg angle is shown in Fig. 3. Curve 1 corresponds to 
2-mm-thick VBG with 250-ppm refractive index modulation which provide 100% diffraction efficiency at 1085 nm. 
One can see a well known central maximum and a number of side lobes with gradually decreasing magnitude. Curve 2 
shows decreasing of DE resulted from decrease of refractive index modulation down to 125 ppm at the same grating 
thickness; this decreases diffraction efficiency at the central maximum down to 50%, but positions of minima and 
maxima of the side lobes practically are not changed. Curve 3 shows decreasing of DE resulted from decreasing of the 
thickness down to 1 mm at δn=250 ppm; this also provides DE of 50% but it causes dramatic widening of angular 
selectivity, when the first minimum moves to the position of the second minimum for 2-mm-thick gratings.  
 
It is important to note that Eq. (2) requires the following criterion for equalizing of diffraction efficiency to zero: 

( ) πξ j=Φ+ 2
122 ,  where j=1, 2, … n, …  (12) 

Let us determine angular selectivity inside the VBG 
medium at the HWFZ (Half Width at First Zero) level, 

HWFZ
mδθ , as the angle between the central maximum and the 

first minimum at the diffraction efficiency curve. For VBGs 
with 100% diffraction efficiency the following expression 
for the HWFZ angular selectivity could be given: 
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It should be noticed that the HWFZ angular selectivity 
HWFZ
mδθ  is slightly fewer than widely used grating 

parameter of FWHM angular selectivity which for 100%-
efficient grating could be easily estimated as 

01 ftFWHM
m ≈δθ .  

 
By the same way as it was described above for angular 
selectivity, HWFZδλ  spectral selectivity is determined as a 
distance between the central maximum and the first zero in 
spectral distribution of DE which could be expressed by 
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Fig. 3. Selectivity of transmitting Bragg gratings on 
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substitution of Eqs (3) and (8) to Eq. (2) at ∆θm=0. In the case of normal transmitting grating, this expression is 
simplified by the use of Eq. (9):  
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Spectral selectivity, has the same structure as angular selectivity due to their linear interrelationship described by Eq. 
(10). For the grating parameters depicted in Fig. 3, this ratio is ∆λ/∆θ≈500 mm-1. Thus, in addition of showing the 
angular selectivity of 2- and 1-mm-thick transmitting VBGs, Fig. 3 shows spectral selectivity of the same gratings which 
is represented by the upper horizontal axis of this Figure. For normal transmitting gratings with 100% diffraction 
efficiency HWFZδλ  could be derived by substitution of Eq. (13) to Eq. (10): 
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HWFZ spectral selectivity of transmitting VBG could be easy varied from values below 0.1 nm to more than 100 nm by 
proper choosing of grating parameters.  

3.2.    Reflecting gratings 
 
Generally, diffraction efficiency of reflecting Bragg grating is described by the following formula: 21 

1

222

22

sinh
/11

−















−Φ
Φ−+=

ξ
ξη   (16) 

Here Φ and ξ are the same phase incursion at Bragg condition and dephasing parameter at certain detuning from Bragg 
condition. According to Ref. [21], these parameters should be redefined for reflecting VBG as 
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For un-slanted reflecting gratings (φ=0), these parameters becomes  
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Spectral selectivity could be described in the terms of Bragg grating parameters: 
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Diffraction efficiency of reflecting Bragg grating strongly depends on grating thickness t and refractive index 
modulation δn. If reflecting VBG is at exact Bragg condition (∆θm=∆λ=0), ξ=0, and maximum of the grating diffraction 
efficiency could be simplified from Eq. (16) as  
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Following to the behavior of hyperbolic tangent function, 
diffraction efficiency maximum asymptotically approaches 
the 100% value by increasing of grating thickness and/or 
refractive index modulation. In this case the maximum of 
grating diffraction efficiency could be predetermined at 
certain value η0 which would serve as one more 
characteristic for reflecting VBG.  
 
Fig. 4 illustrates this interrelation for four different values of 
diffraction efficiency η0: 90% which correspond to 10-dB 
transmitted-beam-attenuation, 99% (20 dB), 99.9% (30 dB), 
and 99.99% (40 dB) at λ0=1085 nm for normal beam 
incidence onto a grating. It should be noticed that refractive 
index modulation δn is less than 1000 ppm only when the 
grating thickness is more than 1 mm for securing the 
diffraction efficiency level of η0=99% (20 dB attenuation). 
Therefore, reflecting VBGs should be thick enough for 
securing of their efficient reflection at relatively low values 
of refractive index modulation. 
 
To determine spectral selectivity δλHWFZ at HWFZ level, Eq. (25) should be equalized to zero, and diffraction efficiency 
reaches zero value at multiple points when ξ≠Φ (otherwise we have a function singularity at this point): 

( ) πξ j=Φ− 2
122 ,  where j=1, 2, …, n, …   (23) 

Generally, for determining of spectral selectivity as the HWFZ level, δλHWFZ, one should substitute Eqs (17) and (18) to 
(23) at j=1. However, this general result could be considerably simplified for un-slanted gratings with diffraction 
efficiency η0: 
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Estimation of typical values of spectral selectivity δλHWFZ for η0=99%, λ0=1085 nm, nav=1.485, and gives the following 
formula for normal beam incidence:  

[ ] [ ]mmt
nmHWFZ 55.0≅δλ    (25) 

Let us note that the grating with fixed thickness t exhibits lesser diffraction efficiency η0 at smaller values δn, and 
spectral selectivity of such a grating is narrowing, too. 
 
Derivation of the basic interrelation between angular and spectral parameters for reflecting VBG could be performed 
similarly to the procedure described in Sec. 3.1 for transmitting Bragg gratings. Expression of the Bragg condition, Eq. 
(1), in its differential form and considering of the second order for angular deviation from exact Bragg angle, one can 
write the interrelation formula for spectral and angular parameters for reflecting gratings: 
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If we would like to consider angular selectivity at zero level of diffraction efficiency, one can calculate it by substitution 
of HWFZδλλ =∆  to Eq. (26). However, it defines two different solutions which follows us to introduce two different 
definitions for angular selectivity shown in Fig. 5. The first one, Full-Width at Zero level angular selectivity, FWZ

mδθ , 
defines as the full distance between two minima (zeros) in angular selectivity that includes both orders of the diffraction 
efficiency maxima between them: 
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By substitution of the spectral selectivity value from Eq. 
(24), angular selectivity FWZ

mδθ  of un-slanted reflecting 
VBG at predetermined DE value η0 could be expressed as 
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Let us note that changing of refractive index modulation 
(and corresponding changing of grating diffraction 
efficiency) gradually affects the angular selectivity FWZ

mδθ . 
When 1-mm-thick VBG has 2000-ppm of refractive index 
modulation (it corresponds to diffraction efficiency 
>99.99%), angular selectivity shape changes to total 
overlapping of diffraction peaks; these peaks are partially 
separating at η0≈99.9% (δn=1500 ppm) as it is shown in 
Fig. 5, and then they are fully dividing at η0≈99% 
(δn=1000 ppm). This result is one of the most important for 
practical applications of reflecting Bragg gratings because it 
allows adjusting of grating angular selectivity by changing of the diffraction efficiency near its 100% limit through 
varying of grating parameters only. 
 
The second type of angular selectivity at Half-Width at First Zero level, HWFZ

mδθ , should be uses for practical 

applications at relatively low diffraction efficiency as well as for higher incident Bragg angles *
mθ  when two diffraction 

orders don’t overlap. HWFZ selectivity determines as an angular distance between the maximum of diffraction 
efficiency and its first (left) zero in angular selectivity curve:  
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Let us estimate at what Bragg angle *
mθ  one should consider the HWFZ angular selectivity rather than its FWZ value for 

a grating with diffraction efficiency η0. The criterion to determine this angle, let us call it as a threshold angle θ0, might 
be defined as a incident Bragg angle at which HWFZ

m
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m δθδθ 4= . At all 0

* θθ <m  FWZ selectivity should be used for 

describing of a grating selectivity, otherwise the doubled value of HWFZ
mδθ  should be considered. Combining of Eqs (28) 

and (29) gives the result: 
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Exact solution of Eq. (30) could be expressed as  
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where G is a grating factor which is determined by the grating thickness t and diffraction efficiency η0: 
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Usually G is about 10-4-10-3; this defines proximity of 

0cosθ  to the unity, and θ0 is small enough. For t=1 mm, 
λ0=1085 nm, and η0=99%, the threshold angle θ0  is about 
1°.  
 
Because there are two different definitions of Bragg grating 
angular selectivity, one should define at what way the 
angular selectivity will be determined. At 0

* θθ <m , FWZ 
angular selectivity is determined by Eq. (28) and showed in 
Fig. 6(A) for 99%-efficient gratings as a function of 
incident Bragg angle. One can see, the thicker the grating 
(in the assumption that all they are 99%-efficient by 
respective choosing of their refractive index modulation), 
the higher the HWZ angular selectivity. The angular 
selectivity FWZ

mδθ  is slightly increasing with the increase of 
the incident Bragg angle; the rate of this increasing is higher 
for thicker gratings. Fig. 6(B) shows that HWFZ angular 
selectivity dramatically depends on both incident Bragg 
angle *

mθ  and VBG thickness t. For instance, 10-mrad 

HWFZ selectivity is secured at *
mθ =10˚ for 0.3-mm-thick 

grating, or at *
mθ =2˚ for 1.25-mm grating thickness. One 

can conclude that reflecting VBG has a minimal angular 
selectivity near the threshold angle θ0 ≈1°. 
 
Hence, despite the fact that spectral selectivity of reflecting 
Bragg gratings can not be unambiguously specified, one can 
use one out of two different definitions of angular 
selectivity in accordance with prevailing of either threshold 
or incident Bragg angle. This phenomenon is inherent to 
reflecting Bragg gratings and it could be used for design of 
high-selective spectral filters with relatively low angular 
selectivity. 
 

4. DIFFRACTION OF GAUSSIAN BEAMS 
ON A TRANSMITTING BRAGG 
GRATING 

 
In this part we present results of Bragg diffraction modeling of monochromatic beam which has the divergence that 
could be approximated by a Gaussian function. If the direction of the beam propagation matches the Bragg condition, 
normalized function of the beam intensity in the angular space could be written as  
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1 2exp),(
b

bG mθθθ  (33) 

For diffraction-limited beam with diameter D, the lower the beam diameter, the higher the beam divergence is occurred. 
For determining of DE of Bragg grating for such divergent beam, convolution in the angular space of the functions given 
by Eqs (11) and (33) should be applied. After substitution of the numerical value of a Gaussian-function integral, 
diffraction efficiency could be written as  

∫= θθθη
π

ηθ dbG
b

b ),()(12)( 1   (34)  
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Fig. 6. Dependence of FWZ (A) and HWFZ (B)
angular selectivity on incident Bragg angle for 
99%-efficient reflecting VBG at λ0=1085 nm, 
nav=1.4867. Grating thickness, mm: (A) - 1 – 0.5; 2 – 
1.0; 3 – 5.0; 4 – 10. (B) -  1 – 0.5; 2 – 1.0; 3 – 3.0; 4 – 
5.0; 5 – 10. 
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Fig. 7(A) shows angular selectivity of the grating with 

HWFZ
mδθ =0.4 mrad and 100% diffraction efficiency for a 

plane monochromatic wave at 1085 nm for four beams with 
different divergences b. While the beam divergence is much 
less than the grating angular selectivity (Curve 1 
corresponding b=0.04 mrad), there is no decrease of 
diffraction efficiency compare to that for planar wave and 
the curve minima reach zero values as it appears for the 
planar wave (Fig. 3). However, if the beam divergence 
becomes comparable with the grating selectivity, dramatic 
decreasing of maximal DE occurs (Curves 2-4). When 
divergence and selectivity values are equal, b= HWFZ

mδθ , 
maximum diffraction efficiency is about 60% only. Also, 
side lobes are flattening while the divergence increasing, 
local minima of angular selectivity starting to differ from 
zero significantly, and at b≥ HWFZ

mδθ =0.4 mrad the 
selectivity curve does not have any local minima at all.  
 
Fig. 7(B) shows the dependence of diffraction efficiency on 
the beam divergence. Four gratings with thickness 20 and 
2.0 mm and spatial frequency 357 mm-1 as well as with 
thickness 2.0 and 0.2 mm and spatial frequency 1086 mm-1 
have respective values of HWFZ angular selectivity of 0.12, 
1.2, 0.4, and 4 mrad in accordance with Eq. (13). It was 
found that diffraction of a divergent beam causes decreasing 
of diffraction efficiency down to 99% when the beam 
divergence b becomes 8 times less than the grating HWFZ 
angular selectivity HWFZ

mδθ , i.e. losses are less than 1% 

when 8b≤ HWFZ
mδθ . Further increasing of the beam 

divergence b (e.g. by decreasing of the bean diameter for 
diffraction-limited beams) results in dramatic decreasing of 
the DE value. When the beam divergence is equal to the 
grating angular selectivity HWFZ

mδθ , diffraction efficiency 
decreases almost twice (down to 58%).  
 
If we consider the Bragg diffraction of polychromatic 
beams with Gaussian shape of the spectral distribution: 
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where parameter w is the HWe-2M spectral width and λ0 is a central wavelength of a beam. Modeling of such diffraction 
could be performed similarly as it was done for divergent beams. Diffraction efficiency of transmitting VBG for such 
beams could be calculated from convolution of the DE for monochromatic wave determined by Eq. (15) with the 
Gaussian spectral distribution described by Eq. (35). This gives us the adjusted value of diffraction efficiency ηλ(w):  

∫= λλλη
π

ηλ dwG
w

w ),()(12)( 2   (36) 

Again, taking into account spectral-angular reciprocity in accordance with Eq. (10), one can conclude that the grating 
DE is only about 60% when the beam spectral width w is equal to the grating selectivity δλHWFZ. Diffraction efficiency 
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Fig. 7. Selectivity of transmitting VBG for divergent 
beams. (A) - Dependence of diffraction efficiency on 
detuning from Bragg angle. Beam divergence, mrad: 1 
– 0.04, 2 – 0.2, 3 – 0.4, 4 – 0.8; grating angular 
selectivity is 0.4 mrad. (B) - Dependence of grating 
DE on the beam divergence. Grating angular 
selectivity, mrad: 1 – 0.12, 2 – 0.4, 3 – 1.2, 4 – 4.0; 
shown by dotted arrows. Dotted line corresponds to 
diffraction efficiency for a beam with divergence or 
spectral width equal to the grating selectivity. 
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for narrow-spectral-line beams is the same as for 
monochromatic wave, and it is decreasing down to 99% 
when beam spectral width becomes approximately 8 times 
fewer than the grating HWFZ spectral selectivity, i.e. when 
δλHWFZ=8w.  
 

5. DIFFRACTION OF GAUSSIAN BEAMS 
ON A REFLECTING BRAGG GRATING 

 
Similarly to diffraction of Gaussian beams on transmitting 
Bragg gratings described above, we will consider the Bragg 
diffraction by comparing of grating selectivity with the 
beam spectral width and/or angular divergence. Results of 
numerical calculations of Bragg diffraction on reflecting 
gratings are shown in Fig. 8. Fig. 8(A) shows how different 
polychromatic beams diffract on 1.1-mm-thick grating 
which has DE=99% at normal beam incidence. According 
to Eq. (24), this VBG has 0.5-nm-spectral selectivity. One 
can see that diffraction efficiency drops down while beam 
spectral widening; this grating has diffraction efficiency of 
about 60% when w=2δλHWFZ. In comparison with the same 
dependence of spectral selectivity for transmitting gratings 
described above, when 60%-level of DE achieved at 
w=δλHWFZ, one can conclude that spectral width of incident 
beams is twice less restrictive parameter for reflecting 
VBGs in comparison with the transmitting ones. Also, side 
lobes in the spectral selectivity curves are beginning to 
disappear when the beam spectral width is approximately 
twice less than the grating spectral selectivity (2w≥δλHWFZ); 
total flattening of the DE curve occurs when these values 
become equal each to other and for further increasing of the 
beam spectral line-width (w≥δλHWFZ). 
 
Fig. 8(B) shows dependence of diffraction efficiency ηλ(w) 
on the beam spectral bandwidth w for a set of VBG with 
different spectral selectivity. These gratings have thickness 
of 10.9, 5.5, 1.1, and 0.55 mm, and all they are 
99%-efficient for monochromatic wave. Their spectral 
selectivity is determined from Eq. (27) as 0.05, 0.1, 0.5, and 
1.0 nm, respectively. One can see that 99%-efficient 
reflecting VBG exhibits fewer losses in the DE value in 
comparison with 100%-efficient transmitting VBG when a 
beam bandwidth is equal to spectral selectivity of the 
grating. In this case, only about 10% from the diffraction 
efficiency for monochromatic beam becomes lost. There is no considerable decreasing in gratings’ DE for the narrowest 
beams, and the decreasing from 99% to 98% occurs when beam width w becomes approximately twice less than the 
grating spectral selectivity. This parameter for 1%-efficiency-decreasing ratio is about 4 times less restrictive in 
comparison with the same parameter for transmitting VBG as it was determined above in Sec. 4. 
 
It is important to note that the general shape of the curves showed in Fig. 8 does not change when the beam incidence is 
not normal (i.e. incident Bragg angle 0* ≠mθ ) but the central beam wavelength obeys the relation *max

00 cos mθλλ = . Thus 

one can use the criterion described above for determining of diffraction losses resulting from spectral widening of 
diffracted beams for all values of incident Bragg angles *

mθ . 
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Fig. 8. Selectivity of 99%-efficient reflecting VBG for 
polychromatic plane waves at normal incidence. (A) - 
Dependence of diffraction efficiency on spectral 
mismatching from Bragg condition. Beam spectral 
width, nm: 1 – 0.05, 2 – 0.25, 3 – 0.5, 4 – 1.0; grating 
Spectral selectivity is 0.5 nm. (B) - Dependence of 
grating DE on the beam spectral width. Grating 
spectral selectivity, nm: 1 – 0.05, 2 – 0.1, 3 – 0.5, 4 – 
1.0; shown by dotted arrows. Dotted line corresponds 
to diffraction efficiency for a beam with spectral width 
which is equal to the grating selectivity.  
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Although the general shape of angular selectivity for 
reflecting VBG at normal incidence is the same as its 
spectral selectivity shown in Fig. 8, two different values of 
angular selectivity described above determines slightly 
different interrelations between grating selectivity, beam 
divergence, and resulting diffraction efficiency. The main 
difference is in reaching of a local maximum in 
characteristic value of diffraction efficiency (which 
corresponds to equilibrium of HWFZ grating selectivity to 
beam divergence) at DE≈95% for 0

* θθ =m  due to 
overlapping of positive and negative diffraction orders. 
Further increasing of incident Bragg angle results in weak 
decreasing of this DE value down to about 90%-level; it is 
in good correlation with the data shown in Fig. 8 for 
spectral selectivity. Generally, reflecting VBGs are less 
restrictive for securing of high DE in comparison with 
transmitting VBGs, especially for divergent beams at the 
incident Bragg angle near threshold one, but they have 
higher spectral selectivity which could considerably restrict 
efficient Bragg diffraction of wide-spectrum beams. 
 

6. COMPARISON OF THE MODEL AND 
EXPERIMENTAL RESULTS 

 
To prove the model experimentally, we recorded transmitting VBG in 1.23-mm-thick PTR glass with spatial frequency 
of 425 mm-1 and refractive index modulation of 420 ppm which should exhibit DE=100% for planar monochromatic 
wave at 1085 nm. 100-W CW single-mode Yb-doped fiber laser (IPG Photonics Corp., model YLR-100) with central 
wavelength of 1085 nm was used for testing. This laser had collimated output (5-mm-diameter Gaussian beam). This 
laser has near-diffraction-limited divergence of 0.23 mrad in the whole studied power region while spectral width at the 
HWe-2M level increases from 2.7 to 4.7 nm, when the output power rose from 15 to 100 W.  
 
Dependence of DE of PTR Bragg grating on the laser power is shown in Fig. 9. Because PTR Bragg gratings have no 
thermally induced effects at power density levels up to 100 kW/cm2, DE decreasing could be explained by changing of 
laser beam parameters at different levels of emitting power. Based on theoretical modeling results, we evaluated how 
spectral width and divergence of the beam affect diffraction efficiency of this particular grating. Theoretical DE of this 
grating is expected to be equal to 100% for planar monochromatic wave. Diffraction of the laser beam with 0.23-mrad-
divergence on the grating with angular selectivity of 1.6 mrad (HWFZ) results in decreasing of diffraction efficiency 
down to 98.6% (Line 1). For planar polychromatic wave with spectral width linearly increasing with power increase, 
calculated diffraction efficiency dependence on power is shown as Line 2. Line 3, as a result of multiplication of Lines 1 
and 2, presents the calculated DE for polychromatic divergent beam which should drop down from 93.5 to 87% for 
beams with spectral width of 2.7 nm and 4.7 nm, respectively. Corresponding experimental data are 93 and 87% 
(triangles in Fig. 9). Comparison of calculation data with experimental results shows very good correspondence. Thus, 
the proposed model is able to describe diffraction of polychromatic divergent beams on real PTR Bragg gratings. 
Another consequence of this coincidence is that the experimental PTR Bragg grating is very close sinusoidal uniform 
grating as it was supposed in the model.  
 

7. CONCLUSIONS 
 

•  Practical mathematical model based on Kogelnik’s coupled wave theory is developed for diffraction of Gaussian 
beams with wide range of spectral width and angular divergence. 

•  The model allows fast analytical calculation and could be used for design of different devices based on volume 
Bragg grating and testing tools for Bragg grating certification.  
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Fig. 9. Dependence of diffraction efficiency of PTR 
Bragg grating on power of radiation with central 
wavelength at 1085 nm. Triangles – experimental 
results. 1 – DE calculation for monochromatic beam 
with 0.2-mrad-divergence. 2 – DE calculation for 
planar wave with spectral width equal to the 
experimental values, 3 – product of 1 and 2. 
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•  Requirements for parameters of gratings and laser beams for lossless Bragg diffraction are formulated. 
•  Theoretical model is compared with and found very close to experimental data. 
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